A New Justification of the Jacobi–davidson Method for Large Eigenproblems
نویسنده
چکیده
The Jacobi–Davidson method is known to converge at least quadratically if the correction equation is solved exactly, and it is common experience that the fast convergence is maintained if the correction equation is solved only approximately. In this note we derive the Jacobi–Davidson method in a way that explains this robust behavior.
منابع مشابه
Nearly optimal preconditioned methods for hermitian eigenproblems under limited memory . Part I : Seeking one eigenvalue Andreas Stathopoulos July 2005
Large, sparse, Hermitian eigenvalue problems are still some of the most computationally challenging tasks. Despite the need for a robust, nearly optimal preconditioned iterative method that can operate under severe memory limitations, no such method has surfaced as a clear winner. In this research we approach the eigenproblem from the nonlinear perspective that helps us develop two nearly optim...
متن کاملNearly Optimal Preconditioned Methods for Hermitian Eigenproblems under Limited Memory. Part I: Seeking One Eigenvalue
Large, sparse, Hermitian eigenvalue problems are still some of the most computationally challenging tasks. Despite the need for a robust, nearly optimal preconditioned iterative method that can operate under severe memory limitations, no such method has surfaced as a clear winner. In this research we approach the eigenproblem from the nonlinear perspective that helps us develop two nearly optim...
متن کاملNumerical Computation of Cubic Eigenvalue Problems for a Semiconductor Quantum Dot Model with Non-parabolic Effective Mass Approximation
We consider the three-dimensional Schrödinger equation simulating nanoscale semiconductor quantum dots with non-parabolic effective mass approximation. To discretize the equation, we use non-uniform meshes with half-shifted grid points in the radial direction. The discretization yields a very large eigenproblem that only several eigenpairs embedded in the spectrum are interested. The eigenvalue...
متن کاملA Jacobi-Davidson Method for Nonlinear Eigenproblems
For the nonlinear eigenvalue problem T (λ)x = 0 we consider a Jacobi–Davidson type iterative projection method. The resulting projected nonlinear eigenvalue problems are solved by inverse iteration. The method is applied to a rational eigenvalue problem governing damped vibrations of a structure.
متن کاملControlling Inner Iterations in the Jacobi-Davidson Method
The Jacobi–Davidson method is an eigenvalue solver which uses the iterative (and in general inaccurate) solution of inner linear systems to progress, in an outer iteration, towards a particular solution of the eigenproblem. In this paper we prove a relation between the residual norm of the inner linear system and the residual norm of the eigenvalue problem. We show that the latter may be estima...
متن کامل